Regular Article

Seasonal variation in the occurrence of venous thromboembolism: A report from the Korean Venous Thromboembolism Working Party

Moon Ju Janga,1, Hee-Jin Kimb,1, Soo-Mee Bangc, Jeong-Ok Leec, Ho-Young Yhimd, Yeo-Kyeoung Kime, Yang-Ki Kimf, Won-il Choig, Eun-Young Leeh, In-Ho Kimh, Seonyang Parki, Hee-Jung Sonh, Duk-Kyung Kimj, Minji Kimk, Doyeun Ohl,

⁎Department of Internal Medicine, School of Medicine, CHA University, Korea
bDepartment of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Korea
cDepartment of Internal Medicine, Seoul National University Bundang Hospital, Korea
dDepartment of Internal Medicine, Chonbuk National University Medical School, Korea
fDepartment of Internal Medicine, Soonchunhyang University School of Medicine, Korea
hDepartment of Internal Medicine, Keymyung University College of Medicine, Korea
iCardiac and Vascular Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Korea
jDepartment of Biostatistics, Samsung Biomedical Research Institute, Korea

Article history:
Received 3 April 2012
Received in revised form 2 July 2012
Accepted 24 July 2012
Available online 15 August 2012

Keywords:
venous thromboembolism
pulmonary embolism
depth vein thrombosis
seasonal variation
risk factors

A B S T R A C T

There have been conflicting results on seasonal variation in the occurrence of venous thromboembolism (VTE). It has also never been studied in Asian population. To address these issues, we investigated seasonal changes of the incidence of VTE in Korean population using 1,495 patients with VTE between January 2001 and December 2010. VTE occurred most frequently in the winter and least frequently in the summer (χ2 = 11.83, P = 0.008). In the subset analyses, the same trend was shown in the PE±DVT group, the unprovoked VTE group, and the VTE without malignancy group. The monthly occurrence rate peaked in December and was at its lowest in July (P = 0.004). In conclusion, our study provides evidence that there is an increased risk for VTE in Korean population in the winter season.

© 2012 Elsevier Ltd. All rights reserved.

Introduction

In contrast to arterial thrombotic events, there have been conflicting results regarding venous thromboembolism (VTE) in terms of seasonal variation. Recently, a meta-analysis demonstrated a significantly increased incidence of VTE in the winter [relative risk (RR) for a VTE in winter = 1.143], and this significantly increased risk was most evident in January, with the RR for VTE in January being 1.194 [1]. Based on these results, the effect of weather on VTE has been regarded as a risk factor for VTE albeit a relatively weak one.

Even though the meta-analysis supplied confirmatory evidence for seasonal variation in VTE, it had two limitations. First, few Asian patients were enrolled in the study (approximately 3% of the patient population) [1]. In term of ethnic differences, the incidence of VTE in the Asian population has been generally found to be lower than in whites, possibly because of genetic mutations [2]. There is evidence that genetic mutations, particularly those for clotting factor V (factor V Leiden) and factor II G20210A, are highly prevalent in the Caucasian population but virtually absent in the Asian population [3,4]. Second, the meta-analysis did not include a subgroup analysis of unprovoked VTE. Dentali et al. pointed out that no study has provided data regarding seasonal variation in the incidence of unprovoked VTE. To address these issues, we investigated whether seasonal variation affected the incidence of VTE in Koreans. The primary aim of the present study was to determine if there was any seasonal variation in the occurrence of VTE in the Korean population, and the secondary aim
was calculated using the formula total cases of each month minus adjust yearly variation. The number of cases after mean-centering Bonferroni’s correction was applied to multiple tests in the subgroup December 1
June 1

Statistical analysis

The distribution of VTE onset within the four seasons was tested for homogeneity in the total VTE population and the various subsets by the chi-square test for goodness of fit with Bonferroni’s correction. The chronobiological analysis of seasonal variation in VTE occurrence was performed by applying a partial Fourier analysis to the time series data in a harmonic regression model with SAS software version 9.1.3 (SAS Institute Inc., Cary, NC). This model selects the harmonic, or the combination of harmonics, that best explain the variance of data. The percentage of the overall variability of the data about the combination of harmonics, that best explain the variance of data. The chronobiological analysis of seasonal variation in VTE occurrence was performed by applying a partial Fourier analysis to

Results

Baseline characteristics

A total of 1,495 cases of VTE were registered in the study period. The mean age of the patients was 60 (SD 16) years, and 43.2% were male. Of the VTE patients, 746 (49.9%) patients were diagnosed as having an isolated DVT, whereas 749 (50.1%) were diagnosed with PE with or without DVT. VTE was unprovoked in 412 (27.5%) patients and provoked in 1,083 (72.4%) patients. Among the provoked VTE cases, VTE was related to malignancy (n = 434), recent surgery (n = 292), immobilization (n = 231), trauma/fracture (n = 125), severe medical disease (n = 160), inherited thrombophilia (n = 89), stroke (n = 88), pregnancy/post-partum (n = 21), use of oral contraceptives (n = 12), and autoimmune disease (n = 8).

Seasonal distribution of venous thromboembolism

Of the 1,495 patients with VTE, the diagnosis was established in the spring in 392 patients (26.2%), in the summer in 317 patients (21.2%), in the autumn in 385 patients (25.7%), and in the winter in 401 patients (26.8%) (Table 1). VTE occurred most frequently in the winter and least frequently in the summer (χ² = 11.83, P = 0.008). In the subset analyses, the same trend was shown in the PE±DVT group (χ² = 13.63, P = 0.007), symptomatic PE group (χ² = 16.77, P = 0.002), the unprovoked VTE group (χ² = 17.80, P = 0.001), and the VTE without malignancy group (χ² = 12.53, P = 0.012). Alternatively, the elderly (≥ 60 yr) group and the VTE with malignancy group had the most VTE occurrences in autumn.

Monthly distribution of venous thromboembolism

The monthly distribution of VTE is shown in Fig. 1. The monthly occurrence rate peaked in December and was at its lowest in July (P = 0.004) (Table 2). In addition, similar trends were found in subset analyses of men (peak in December, P = 0.014), the elderly group (peak in December, P = 0.034), the PE±DVT group (peak in November, P = 0.001), symptomatic PE group (peak in November, P = 0.001), the

Table 1 Seasonal Variation of onset of venous thromboembolism: Conventional χ² Statistics.

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Spring</th>
<th>Summer</th>
<th>Autumn</th>
<th>Winter</th>
<th>χ²</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>646</td>
<td>168</td>
<td>134</td>
<td>168</td>
<td>176</td>
<td>6.5077</td>
<td>0.179</td>
</tr>
<tr>
<td>Women</td>
<td>849</td>
<td>224</td>
<td>183</td>
<td>217</td>
<td>225</td>
<td>5.5536</td>
<td>0.271</td>
</tr>
<tr>
<td>Age*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 60 yr</td>
<td>639</td>
<td>160</td>
<td>142</td>
<td>151</td>
<td>186</td>
<td>6.7653</td>
<td>0.160</td>
</tr>
<tr>
<td>≥ 60 yr</td>
<td>856</td>
<td>232</td>
<td>175</td>
<td>234</td>
<td>215</td>
<td>10.4953</td>
<td>0.030</td>
</tr>
<tr>
<td>VTE type*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DVT only</td>
<td>746</td>
<td>183</td>
<td>168</td>
<td>205</td>
<td>190</td>
<td>3.8016</td>
<td>0.567</td>
</tr>
<tr>
<td>Proximal DVT</td>
<td>671</td>
<td>162</td>
<td>153</td>
<td>182</td>
<td>174</td>
<td>2.9374</td>
<td>0.083</td>
</tr>
<tr>
<td>PE ± DVT</td>
<td>749</td>
<td>209</td>
<td>149</td>
<td>180</td>
<td>211</td>
<td>13.6328</td>
<td>0.007</td>
</tr>
<tr>
<td>Symptomatic PE</td>
<td>655</td>
<td>183</td>
<td>125</td>
<td>155</td>
<td>192</td>
<td>16.7740</td>
<td>0.002</td>
</tr>
<tr>
<td>VTE cause*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unprovoked</td>
<td>412</td>
<td>110</td>
<td>83</td>
<td>84</td>
<td>135</td>
<td>17.8058</td>
<td>0.001</td>
</tr>
<tr>
<td>Provenoked</td>
<td>1,083</td>
<td>282</td>
<td>234</td>
<td>301</td>
<td>266</td>
<td>8.9187</td>
<td>0.061</td>
</tr>
<tr>
<td>Cancer*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>434</td>
<td>107</td>
<td>90</td>
<td>136</td>
<td>101</td>
<td>10.6636</td>
<td>0.027</td>
</tr>
<tr>
<td>No</td>
<td>1,061</td>
<td>285</td>
<td>227</td>
<td>249</td>
<td>300</td>
<td>12.5344</td>
<td>0.012</td>
</tr>
</tbody>
</table>

VTE, venous thromboembolism; DVT, deep vein thrombosis; PE, pulmonary embolism.

* After Bonferroni’s correction due to subgroup analysis.
unprovoked VTE group (peak in November, \(P = 0.001 \)), and the VTE without malignancy group (peak in December, \(P = 0.001 \)).

Discussion

The weather of South Korea is characterized by four distinct seasons, spring, summer, autumn and winter, and the contrast between winter and summer is striking. Winter is bitterly cold, whereas summer is hot and humid. The transitional seasons, spring and autumn, are sunny and generally dry. Based on these environmental conditions, we investigated seasonal variations in the VTE Registry of 11 Korean teaching hospitals. Our study demonstrated a significant seasonal variation in VTE in Korean patients that was characterized by a peak in the winter and a nadir in the summer. This study represents the largest national epidemiologic study of seasonal variation in VTE in Asia. The results will provide a better insight into and a fuller understanding of VTE pathophysiology in Asia.

Many studies about the seasonal variation of VTE have been reported over the last three decades, but these studies are not always in agreement [5–11]. Differences in geographical area, ethnicity, and ambient temperature all could lead to contradictory results regarding seasonal variation in VTE. Of these studies, many were conducted by Italian groups. In a prospective study, Galleerani et al. reported significant seasonal variation in the occurrence of DVT with a peak in winter [7]. Recently, a study of the MASTER registry, which is composed of the data of patients from 25 Italian hospitals, found a similar seasonal pattern [10]. However, in contrast to the Italian studies, a large population-based study that used the National Hospital Discharge Survey of the United States did not show a seasonal pattern in the diagnosis of PE among hospitalized patients [11]. Several factors, such as the definition of season and the statistical analysis used, may partially explain the results, but study population, climate conditions, and geographic location might be the most likely explanations for these contradictory results. Korea and Italy have seasons with similar characteristics, and therefore our results should be more congruent with the results of the MASTER registry study than the study in the United States. Hence, our study demonstrating a significant seasonal variation in VTE was as expected. Interestingly, when our study population was stratified into subgroups, this trend was observed in unprovoked VTE patients, but the provoked group failed to show any seasonal variation. This is likely because seasonal variation is only a weak risk factor for VTE, and thus would only have a prominent role in the etiology of unprovoked VTE (i.e., when the stronger risk factors are not present). Recently, Dentali et al. demonstrated confirmatory evidence for seasonal variation in VTE. According to a meta-analysis that included 17 studies, these results showed that winter was associated with a 14% risk for VTE [1]. Although the meta-analysis provided strong evidence for the seasonal variation of VTE, we should also consider ethnic differences in the occurrence of VTE. In this regard, our results might support the notion that the meta-analysis results can be generalized to all populations regardless of ethnic differences.

Although the mechanism of seasonal variation in VTE has not been elucidated, possible mechanisms have been reported that could explain this association. First, hemostatic alterations have been suggested as the most plausible explanation for seasonal variation in VTE. Keatinge et al. demonstrated that mild surface cooling increased the packed cell volume, the platelet count, and usually the mean platelet volume to produce a 15% increase in the fraction of plasma volume occupied by platelets [12]. In addition, Woodhouse et al. reported that the clotting activities of plasma fibrinogen and factor VII (FVIIc) were greater in the winter with the estimated winter–summer differences being 0.13 g/L for fibrinogen and 4.2% of the standard for FVIIc [13]. Although the seasonal differences in

![Fig. 1. Monthly distribution of venous thromboembolism. Results are expressed as cases after mean-centering with box-and-whisker plot. Results represent the monthly occurrence rate peaked in December (95% CI: November – January, \(P = 0.004 \)).](image-url)
fibrinogen concentration found in previous studies ranged from 0.13 g/L to 0.78 g/L; these studies confirmed that plasma fibrinogen did vary by season and had a winter peak and a summer nadir [13–15]. Interestingly, this variation correlated significantly with inflammatory makers such as C-reactive protein and α1-antichymotrypsin. In this respect, hemostatic alteration can be explained by the high incidence of acute respiratory infections in winter. However, this hypothesis has not been confirmed. Moreover, seasonal variation in fibrinogen did not show any correlation with other inflammatory markers, including white cell count, interleukin-6, and soluble P-selectin [14,16]. Second, limited physical activity during cold weather could explain the seasonal variation of VTE. As VTE is a multifactorial disease driven by environmental/acquired risk factors, cold weather might have more of an impact on a subject who already had other VTE risk factors (e.g., old age, malignancy, and inherited thrombophilia). In addition to hemostatic alterations and limited physical activity, many other factors, including air pollution, respiratory infection, and atmospheric pressure, have been proposed. However, the influences of these factors on VTE remain controversial [17–19].

This study has several potential limitations. First, we did not divide the seasons exactly by day but instead categorized the seasons by quarter of the year. Thus, there is a possibility that a few patients were categorized incorrectly. However, because the study duration is so broad and we categorized the season based on mean temperature by month, the likelihood that we misclassified the number of VTE events that would sufficiently interfere with our findings is very low. Second, we defined the occurrence of VTE based on the date of diagnosis, and there is the possibility that there was a substantial interval between the onset of symptoms and the date of diagnosis. However, because VTE was usually diagnosed at maximum 6–12 days after clinical presentation, the influence on our results is likely low. Third, since all participating hospitals are teaching hospitals, the cases were mostly hospitalized cases in our registry. Thus, the present data should be interpreted with caution because over 90% of VTE patients were hospitalized cases. Our results may not adapt to the seasonal variation of the outpatient cases.

In conclusion, our study provides evidence that there is an increased risk for VTE, particularly unprovoked VTE, in Korean population in the winter season.

Conflict of Interest Statement

The author(s) declared no conflicts of interest with respect to the authorship and/or publication of this article.

References